A distribuição de salários pagos em uma empresa pode ser analisada destacando-se a parcela do total da massa salarial que é paga aos 10% que recebem os maiores salários. Isso pode ser representado na forma de um gráfico formado por dois segmentos de reta, unidos em um ponto P, cuja abscissa tem valor igual a 90, como ilustrado na figura.
No eixo horizontal do gráfico tem-se o percentual de funcionários, ordenados de forma crescente pelos valores de seus salários, e no eixo vertical tem-se o percentual do total da massa salarial de todos os funcionários.
O indice de Gini, que mede o grau de concentração de renda de um determinado grupo, pode ser calculado pela razão A/(A+B), em que A e B são as medidas das áreas indicadas no gráfico.
A empresa tem como meta tornar seu indice Gini igual ao do país, que é 0,3. Para tanto, precisa ajustar os salários de modo a alterar o percentual que representa a parcela recebida pelos 10% dos funcionários de maior salário em relação ao total da massa salarial.
Disponível em: www.ipea.gov.br. Acesso em: 4 maio 2016 (adaptado).
Para atingir a meta desejada, o percentual deve ser
a) 40%
b) 20%
c) 60%
d) 30%
e) 70%
Resposta
A = 0,3
A+B
A = 0,3A + 0,3B
A - 0,3A = 0,3B
0,7A = 0,3B
A = 0,3
B 0,7
A corresponde a 30% e B 70% do total
Por outro lado
A+B é a área de um triangulo(pela figura)
A+B = 100 x 100 / 2 = 5000
A = 30/100 x 5000 = 30 x 50 = 1500
B = 5000-1500 = 3500
A área B pode ser dividida em duas, um triangulo retângulo e um trapézio
Vou chamar de k a coordenada y do ponto P que desconhecemos
O triangulo tem área
90 . k / 2 = 45k
O trapezio
(100+k)10/2 = (1000+10k)/2 = 500 + 5k
Juntando as duas
45k + 500 + 5k = 3500
50k = 3500 - 500
50k = 3000
k = 3000/50
k = 60%
Muito cuidado, k é a porcentagem dos que recebem menores salários. A questão pede os maiores logo 100 - 60 = 40%
Alternativa A
Nenhum comentário:
Postar um comentário